Salt effects on the protonation of oxalate in aqueous NaCl, KCl and tetraethylammonium iodide solution at $5 \le T \le 50^{\circ}$ C and $0 \le I \le 1 \text{ mol } \text{dm}^{-3}$

Alessandro De Robertis ^a, Concetta De Stefano ^a, Carmelo Rigano ^b and Silvio Sammartano ^a

^a Istituto di Chimica Analitica dell'Università, Salita Sperone 31, 98166 S. Agata di Messina (Italy) ^b Dipartimento di Scienze Chimiche dell'Università, Viale A. Doria 6, 95125 Catania (Italy) (Received 10 September 1991)

Abstract

Protonation constants of oxalate (ox^{2^-}) were obtained, by potentiometric measurements, in NaCl, KCl and tetraethylammonium iodide aqueous solutions in the ranges $5 \le T \le 50^{\circ}$ C and $0 \le I \le 1$ mol dm⁻³. The differences in protonation constant values were explained by a complex formation model assuming the formation of $M(ox)^-$ and $MH(ox)^0$ (M = Na⁺, K⁺) complexes. From the dependence on temperature of the protonation and formation constants, ΔH° values were calculated. The dependence on ionic strength of the formation thermodynamic parameters was obtained for each species. Consideration is given to the use of different concentration scales, and comparison is made with literature findings. Recommended values are given. Simulated protonation constants in sea water conditions are reported.

INTRODUCTION

In the last decade we have dedicated much work to the study of the protonation of low molecular weight ligands [1-4] in different salt media with the aim of building up a simple model for the dependence of protonation constants on ionic strength. It was found that differences in protonation constants obtained in different media can be explained by assuming the formation of weak complexes of the type O-ligand-alkali metal ion [1,5] or N-ligand (protonated)-inorganic anion [6,7] (ClO₄⁻, NO₃⁻, Cl⁻, I⁻). In this work we report a potentiometric study on the protonation of oxalate in NaCl, KCl and tetraethylammonium iodide aqueous solution at different temperatures and salt concentrations.

Correspondence to: C. Rigano, Dipartimento di Scienze Chimiche dell'Università, Viale A. Doria 6, 95125 Catania, Italy.

Protonation constants of oxalate have been widely studied [8–10], but their dependence on ionic strength and on media has been investigated only at certain temperatures or ionic strengths. Here we give a full picture of salt effects on protonation in the range $0 \le I \le 1 \mod \text{dm}^{-3}$ and $5 \le T \le$ 50°C in NaCl and KCl aqueous solution.

Particular attention has been paid to the possibility of using formation thermodynamic parameters in the speciation of natural fluids.

EXPERIMENTAL

Reagents

Oxalic acid dihydrate (Fluka, biochemika) was used as received. Its purity, as checked by alkalimetric measurements, was > 99.8%. Sodium chloride and KCl (Fluka, biochemika) were dried in an oven at 110°C. Tetraethylammonium iodide (Et₄NI) and tetramethylammonium hydroxide (Me₄NOH) (Fluka, puriss.) were purified as described by Perrin et al. [11]. Solutions of NaOH, KOH and Me₄NOH were standardized against biphthalate, and HCl solution against sodium carbonate; cross titrations were performed as a check. Twice distilled water and grade A glassware were used to prepare all solutions. Thermal expansion of solutions was always taken into account so as to calculate correct molar and molal concentrations.

Apparatus

Three different sets of potentiometric equipment were employed: (1) a Metrohm model E600 with manual addition of titrant; (2) a semiautomatic homemade potentiometer built with Mosteck logic circuits, an Analog Devices potentiometer and a Printel printer; this apparatus adds a preestablished volume of titrant and prints the corresponding e.m.f. value; (3) a Metrohm model E654 coupled with a Metrohm Dosimat 665 and with appropriate software for fully computerized titrations. The potentiometers were coupled with a variety of glass reference electrodes (Orion, Metrohm, Ingold). The use of different equipment ensured the avoidance of systematic errors. In systems (1) and (2), the titrant solution was delivered by an Amel model 882 dispenser with a minimum reading of 0.001 ml. In all cases the instrumental resolution was +0.1 mV. The electrode couples were calibrated in $pH = -\log[H^+]$ units by titrating HCl (5 mmol dm⁻³) with standard hydroxide (NaOH, KOH or Me₄NOH for NaCl, KCl and Et₄NI media, respectively) under the same conditions (temperature, concentration and ionic strength) as for the solution under study. The titration cells (50 ml) were thermostatted at $T + 0.1^{\circ}$ C. Purified nitrogen was bubbled into the solutions during the titration and magnetic stirring was employed.

Procedure

A volume of 25–50 ml containing oxalic acid (5–10 mmol dm⁻³) and the necessary quantity of alkali chloride or Et_4NI to give the required ionic strength value ($0 < I \le 1.00 \text{ mol } \text{dm}^{-3}$) was titrated with standard NaOH, KOH or Me₄NOH ($0.2-0.4 \text{ mol } \text{dm}^{-3}$) to neutralization (35–40 experimental points). An excess of HCl (5–10 mmol dm⁻³) was also added to all solutions in order to complete the protonation of the oxalate anion and to calculate directly the internal standard electrode potential E_{int}° (we denote by E_{ext}° the corresponding value calculated by separate calibration); if $|E_{\text{int}}^{\circ} - E_{\text{ext}}^{\circ}| > 1 \text{ mV}$, the titration was rejected. The reproducibility of potentiometric systems (1) and (2) was $\pm 0.005 \text{ pH}$ unit; that of system (3) was $\pm 0.003 \text{ pH}$ unit. The junction potential E_j was always considered when the pH was < 3.

Calculations

Calculations relating to the determination of oxalate purity, to the evaluation of E° and E_{j} and to standardizing the sodium, potassium and tetramethylammonium hydroxide solutions were carried out by means of the computer program ESAB2M [12]. For the evaluation of protonation and stability constants, the computer programs STACO [13] and ES2WC [14] were used. Distribution diagrams were calculated by the program ES4EC [15].

As regards the ionic strength, since Cl^- associates weakly with Na⁺ and K⁺, we considered in the calculations the effective ionic strength I_e by using the following degrees of dissociation (C = salt concentration)

$$\begin{aligned} \alpha &= 1 - C_{\text{NaCl}}^{1/2} \left[0.033 - 9 \times 10^{-4} (T - 25) \right] \\ &- C_{\text{NaCl}} \left[0.219 - 4 \times 10^{-4} (T - 25) \right] + 0.079 C_{\text{NaCl}}^{3/2} \\ \alpha &= 1 - C_{\text{KCl}}^{1/2} \left[0.027 - 5 \times 10^{-4} (T - 25) \right] \\ &- C_{\text{KCl}} \left[0.246 - 1.5 \times 10^{-4} (T - 25) \right] + 0.059 C_{\text{KCl}}^{3/2} \end{aligned}$$

These degrees of dissociation were obtained in previous work [16] from a careful analysis of literature data; the error arising from the use of α in calculating the real ionic strength is about 0.05C. The ionic strength, calculated by considering this association, was indicated by I_e , i.e. the effective ionic strength. Protonation and formation constants are expressed as (charges omitted)

$$K_{j}^{H} = [H_{j}(ox)] / \{ [H] [H_{j-1}(ox)] \}$$

$$\beta_{j}^{H} = \pi K_{j}^{H}$$

$$K_{j}^{M} = [MH_{j-1}(ox)] / \{ [M] [H]^{j-1} [ox] \} \qquad \beta_{i}^{M} = K_{i}^{M} K_{i}^{H}$$

$$\binom{^{T}}{K}, \ ^{T}\beta = \lim_{I \to 0} (K, \beta)$$

ma mdder										1
Salt	T (°C)		I _m	Icic	I _{c,m}	$\log K_{1c}^{,H}$	$\log K_{\rm 1m}^{\rm H}$	$\log \beta_{2c}^{,\rm H}$	$\log \beta_{2m}^{\prime H}$	1
NaCl	10	0.04	0.04	0.04	0.04	3.91 ^b	3.91 ^b	5.05 °	5.05 °	
	10	0.17	0.17	0.16	0.16	3.73	3.73	4.81	4.81	
	10	0.40	0.40	0.36	0.36	3.62	3.62	4.68	4.67	
	10	0.75	0.76	0.64	0.65	3.55	3.55	4.59	4.59	
	10	1.23	1.25	1.00	1.02	3.51	3.50	4.53	4.52	
	25	0.04	0.04	0.04	0.04	3.95	3.95	5.12	5.12	
	25	0.17	0.17	0.16	0.16	3.76	3.76	4.87	4.87	
	25	0.39	0.39	0.36	0.36	3.65	3.65	4.74	4.73	
	25	0.73	0.74	0.64	0.65	3.59	3.58	4.65	4.64	
	25	1.20	1.23	1.00	1.03	3.55	3.54	4.59	4.58	
	37	0.04	0.04	0.04	0.04	4.00	4.00	5.19	5.19	
	37	0.17	0.17	0.16	0.16	3.81	3.80	4.93	4.93	
	37	0.39	0.40	0.36	0.37	3.69	3.69	4.78	4.78	
	37	0.73	0.74	0.64	0.65	3.62	3.61	4.70	4.68	
	37	1.19	1.22	1.00	1.03	3.57	3.57	4.63	4.62	
	45	0.04	0.04	0.04	0.04	4.05	4.04	5.25	5.25	
	45	0.16	0.16	0.16	0.16	3.84	3.84	4.98	4.98	
	45	0.39	0.40	0.36	0.37	3.72	3.72	4.84	4.83	
	45	0.73	0.75	0.64	0.66	3.64	3.63	4.75	4.74	
	45	1.17	1.21	1.00	1.04	3.60	3.59	4.70	4.68	

Apparent protonation constants of oxalate ^a in NaCl and KCl aqueous solutions

5.08	4.88	4.79	4.74	4.70	5.14	4.92	4.81	4.75	4.70	5.20	4.96	4.83	4.75	4.69	5.26	5.00	4.86	4.78	4.72	
5.08	4.88	4.79	4.76	4.72	5.14	4.92	4.82	4.76	4.73	5.20	4.96	4.84	4.77	4.72	5.26	5.01	4.87	4.80	4.75	
3.93	3.78	3.71	3.67	3.63	3.96	3.80	3.71	3.65	3.61	4.01	3.83	3.72	3.64	3.59	4.05	3.85	3.73	3.64	3.59	
3.93	3.79	3.71	3.67	3.65	3.96	3.80	3.71	3.66	3.63	4.01	3.83	3.72	3.65	3.60	4.05	3.86	3.73	3.65	3.60	
0.04	0.16	0.36	0.65	1.04	0.04	0.16	0.37	0.66	1.04	0.04	0.16	0.37	0.66	1.05	0.04	0.16	0.37	0.66	1.05	
0.04	0.16	0.36	0.64	1.00	0.04	0.16	0.36	0.64	1.00	0.04	0.16	0.36	0.64	1.00	0.04	0.16	0.36	0.64	1.00	
0.04	0.17	0.40	0.77	1.32	0.04	0.17	0.41	0.77	1.30	0.04	0.17	0.41	0.77	1.30	0.04	0.17	0.40	0.76	1.29	
0.04	0.17	0.40	0.76	1.28	0.04	0.17	0.40	0.75	1.26	0.04	0.17	0.40	0.75	1.25	0.04	0.17	0.39	0.74	1.24	
10	10	10	10	10	25	25	25	25	25	37	37	37	37	37	45	45	45	45	45	
KCI																				

^a For the symbols used in this table, see the section entitled calculations. ^b $3s(\log K_1^{,H}) = 0.005-0.01$. ^c $3s(\log \beta_2^{,H}) = 0.05-0.1$.

j	T (°C)	$\log {}^{\mathrm{T}}\beta_{j,c}^{\mathrm{H}}$	$\log {}^{\mathrm{T}}\beta_{j,\mathrm{m}}^{\mathrm{H}}$	ΔG°	ΔH°	ΔS°	ΔC_{p}°
1	5	4.224 ^b	4.224 ^b	- 22.49	1.1 ^b	85	0.25 ^b
	10	4.230	4.230	-22.93	2.4	90	0.27
	15	4.240	4.240	- 23.39	3.8	94	0.28
	20	4.255	4.254	-23.88	5.2	99	0.30
	25	4.273	4.272	- 24.38	6.8	105	0.32
	30	4.296	4.294	-24.92	8.4	110	0.34
	35	4.322	4.319	-25.48	10.2	116	0.36
	40	4.353	4.350	- 26.07	12.1	122	0.38
	45	4.388	4.384	-26.69	14.0	128	0.40
	50	4.427	4.422	- 27.36	16.1	134	0.42
2	5	5.49 °	5.49 °	- 29.25	5 °	124	0.2 °
	10	5.51	5.51	- 29.88	6	128	0.2
	15	5.54	5.54	- 30.53	8	132	0.3
	20	5.56	5.56	- 31.21	9	137	0.3
	25	5.59	5.59	- 31.89	10	141	0.3
	30	5.62	5.62	- 32.62	12	146	0.3
	35	5.66	5.65	-33.35	13	151	0.3
	40	5.70	5.69	- 34.13	15	156	0.3
	45	5.74	5.73	- 34.92	17	162	0.4
	50	5.78	5.78	- 35.74	18	167	0.4

Thermodynamic parameters for the protonation of oxalate ^a

For the symbols used in this table, see the section entitled Calculations. Units: ΔG° and $\Delta H^{\circ} \text{ kJ mol}^{-1}; \ \Delta S^{\circ} \text{ J } \text{ K}^{-1} \text{ mol}^{-1}; \ \Delta C^{\circ}_{p} \text{ kJ } \text{ K}^{-1} \text{ mol}^{-1}.$ $^{b} \ 3s(\log {^{T}}\beta_{1}^{H}) = 0.002 - 0.005; \ 3s(\Delta H^{\circ}_{1}) = 0.15 - 0.4; \ 3s(\Delta C^{\circ}_{p_{1}}) = 0.01 - 0.02.$ $^{c} \ 3s(\log {^{T}}\beta_{2}^{H}) = 0.04 - 0.07; \ 3s(\Delta H^{\circ}_{2}) = 3 - 5; \ 3s(\Delta C^{\circ}_{p_{2}}) = 0.1 - 0.2.$

In this paper, subscripts c and m indicate molar and molal scales, respectively, and primes indicate apparent or conditional quantities. Throughout the paper the uncertainties in the parameters are three times the standard deviation.

RESULTS AND DISCUSSION

In Table 1 we report the apparent protonation constants of oxalate in aqueous NaCl and KCl media. A series of experiments was performed also at I < 0.04 mol dm⁻³ in order to obtain protonation constants at infinite dilution, which are reported in Table 2. Protonation constants in tetraethylammonium iodide solutions are reported in Table 3. In these tables the protonation constant values are given on both the molar and the molal scale, in order to calculate the correct thermodynamic parameters [18]. From the dependence of log K^{H} on T, the thermodynamic parameters

 ΔH° , ΔS° and ΔC_{p}° were calculated using the equation proposed by Clarke and Glew [17]

$$\log K_{(T)}^{\mathrm{H}} = \log K_{(\theta)}^{\mathrm{H}} + \left[\Delta H_{(\theta)}^{\circ} \left(\frac{1}{\theta} - \frac{1}{T} \right) + \Delta C_{p(\theta)}^{\circ} \left(\frac{\theta}{T} + \ln \frac{T}{\theta} - 1 \right) \right] \times \left(R \ln 10 \right)^{-1}$$
(1)

Protonation constants show the trend (see Fig. 1) $Et_4NI \gg KCL \ge NaCl$, which can be explained, as done already [1,9,10,19], by assuming that Et_4N^+ (or Me_4N^+ , arising from the titrant) does not form any complex species with oxalate and that Na⁺ and K⁺ form weak complexes. For both alkali metal ions the species $M(ox)^{-}$ and $MH(ox)^{0}$ can be hypothesized. Calculations performed with the computer programs ES2WC and STACO showed that this hypothesis is very consistant with experimental data. In Table 4 we report the formation thermodynamic parameters for $Na(ox)^{-}$, $NaH(ox)^{0}$, $K(ox)^{-}$ and $KH(ox)^{0}$ species. In Fig. 2, a distribution diagram for the $Na^+-H^+-ox^{2-}$ system is reported. In Table 5 we report some comparisons with literature findings. The protonation of oxalate has been widely studied and thermodynamic parameters have been obtained by potentiometry (glass and hydrogen electrode, with or without liquid junction) and by calorimetry. Reported log $K_j^{\rm H}$ and ΔH_j° values are generally in good agreement with our findings for j = 1, but for j = 2 the literature data seem to be quite inaccurate. As concerns sodium and potassium unprotonated complexes, few data are available; by considering that for

Fig. 1. Ionic strength dependence of protonation constants.

48 11 12 12 12 12 13 10 10 10 10 10 10 10 10 10 10 10 10 10	88 114 82 82 97 97	88 114 124 121 121 121 121 82	88 114 22 111 28 88 88 88	88 114 124 111 121 121 121 121 122	88 114 124 111 82 112 82 112 82 112 82 112 82 112 122	8 12 28 21 12 28 27 28 21 12 28 28 21 12 28 28 21 12 28 28 21 12 28 28 21 12 28 28 21 12 28 28 28 28 28 28 28 28 28 28 28 28 28	8 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	88 111 122 132 133 14 15 15 15 15 15 15 15 15 15 15 15 15 15	84 100 114 124 124 124 124 124 124 124 124 0.4 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.3 112 122 0.4 0.3 122 122 0.3 0.3 0.3 122 0.3 0.3 122 0.3 0.3 122 0.3 0.3 122 0.3 0.3 122 0.3 0.3 121 0.3 0.3 121 0.3 0.3 121 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	84 114 124 97 82 82 111 111 111 82 83 111 93 112 112 112 112 93 03 112 101 112 103 03 03 03 03 03 03 03 03 03 03 03 03 0	84 114 124 124 124 124 124 124 124 124 12
2 11000 111 11000 2 82 82 82 82 82	2 1100 114 114 2 8 822 8 822 111	2 100 11 114 14 124 8 82 8 97 11 11 11 11 12 12 12 12 12 12 12 12 12	7 100 14 114 8 82 8 97 14 111 14 114 124 12 12 131 7 98 82 82 82 82 82 82 82 82 82 82 82 82 82	7 100 14 114 2 2 82 8 97 14 114 14 124 14 121 11 111 12 11 12 11 11	7 100 14 114 14 124 14 124 14 124 14 124 14 121 111 112 121 112 122	7 100 14 114 14 124 14 124 14 124 14 124 14 121 111 111 112 3 82 82 82 82 82 82 82 83 83 86 86	7 100 14 114 14 124 14 124 14 124 14 124 14 123 14 123 14 123 13 101 101	7 100 14 11 14 124 14 124 14 124 14 123 14 121 11 123 14 123 11 123 11 11 11 11 11 11 11 11 11 11 11 11 11	7 100 14 11 14 124 14 124 14 124 14 123 14 123 14 123 11 11 123 134 14 123 131 111 112 123 126 111 112 126 126 126 127 126 127 126 127 126 127 126 127 126 127 127 126 127 127 127 127 127 127 127 127 127 127	7 100 111 114 114 114	2 111 112 114 115 115 115 115 115 115 115 115 115
2 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	11 4 2 8 11	- 11 4 0 8 1 4 0	2 1 4 0 8 1 4 0 C		7 II 7 0 8 II 7 0 7 II 7	2	 2 1 4 0 5 1 4 0 5 1 4 0 5 2 1 4 0 5 1 4 0 5 		2 1 4 7 8 1 4 7 7 1 4 6 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		
- 24.1 - 25.1 - 21.0 - 22.3	- 24.1 - 25.1 - 21.0 - 22.3 - 23.5	- 24.1 - 25.1 - 21.0 - 21.0 - 23.5 - 24.4 - 20.9	- 24.1 - 25.1 - 21.0 - 21.0 - 23.5 - 24.4 - 20.9	- 24.1 - 25.1 - 21.0 - 22.3 - 23.5 - 23.5 - 23.5 - 23.5 - 23.5	- 24.1 - 25.1 - 25.1 - 21.0 - 22.3 - 23.5 - 23.5 - 23.5 - 23.5	- 24.1 - 25.1 - 25.1 - 21.0 - 23.5 - 24.4 - 24.4 - 23.5 - 23.5 - 21.2	- 24.1 - 25.1 - 25.1 - 21.0 - 23.5 - 23.5 - 23.5 - 23.5 - 21.2 - 21.2	- 24.1 - 25.1 - 25.1 - 21.0 - 23.5 - 23.5 - 23.5 - 23.5 - 23.5 - 23.5 - 23.9	- 24.1 - 25.1 - 25.1 - 21.0 - 23.5 - 23.5 - 24.4 - 21.2 - 23.9 - 24.8	-24.1 -25.1 -25.1 -21.0 -22.3 -24.4 -23.5 -24.4 -23.5 -23.5 -23.5 -24.4 -23.5 -	-24.1 -25.1 -25.1 -25.1 -22.3 -24.4 -23.5 -
4.06 4.11 3.87 3.90	4.06 3.87 3.90 3.96	4.06 4.11 3.87 3.90 4.01 3.87	4.06 4.11 3.87 3.90 3.91 3.91	4.06 4.11 3.97 3.96 3.91 3.91 3.91	4.06 4.11 3.97 3.96 3.91 3.91 4.01	4.06 4.11 3.97 3.96 3.91 3.91 3.92 3.92	4.06 4.11 3.87 3.96 3.97 3.97 3.92 3.92 3.96	4.06 4.11 3.87 3.96 3.97 3.96 3.97 4.01 4.03	4.06 4.11 3.87 3.96 3.97 3.97 3.92 4.03 4.03	4.06 4.11 3.87 3.96 3.97 3.98 3.98 4.03 3.98 3.98 3.98	4.06 4.11 3.87 3.98 3.97 3.98 3.98 4.03 4.03 4.03 4.03
4.06 4.11 3.87 3.90 3.90	4.06 3.3.87 3.90 3.90 3.90 3.90 3.90 3.90 3.90 3.90	2.87 2.99 2.90 2.90 2.87 2.87 2.87 2.87 2.87 2.87 2.87 2.87	2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	4.06 3.3.87 3.3.90 3.90 3.91 3.91 3.97 3.97 3.97 3.97 3.97 3.97 3.97 3.97	4 4.06 3.390 3.90 3.90 3.90 3.91 4.4 2.03 4.4 2.03 4.4 2.03 4.4 2.03 4.4 2.03 4.4 2.03 4.4 2.03 4.4 2.03 4.4 2.03 2.4 2.03 2.4 2.04 2.04 2.04 2.04 2.04 2.04 2.04	2.06 2.06 2.06 2.09 2.09 2.09 2.09 2.09 2.09 2.09 2.09 2.09 2.09 2.09 2.09 2.09 2.09 2.00	8. 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4 4 06 3.3.90 3.3.97 3.3.97 3.3.97 4.4.03 3.3.97 4.4.03 3.3.97 4.4.03 3.3.97 4.4.03 3.3.97 4.4.03 3.3.97 4.4.03	4.06 4.11 4.11 4.11 4.10	4 - 06 4 - 06 3 - 3 - 06 3 - 3 - 06 4 - 4 - 03 3 - 2 - 03 4 - 04 4 - 04	4 - 06 - 4 - 06 - 4 - 05 - 4 - 02 - 7 - 02
3.87 3.87 3.90	3.90 3.90 3.90	3.90 3.90 3.90 3.90 3.90 3.87 3.87	3.99 9.02 9.02 9.02 9.02 9.02 9.02 9.02 9						211. 200 200 200 200 200 200 200 20		
4 45 6 10 25	04 45 11 16 10 25 17 25 37	04 45 16 10 17 25 17 37 39 10	04 45 16 16 10 17 25 17 25 39 45 39 25 39 25	004 45 117 25 117 25 117 45 39 10 39 25 39 37	04 45 117 25 117 25 39 10 39 25 39 45 45 45 45 45 45 45 45 45 45 45 45 45 4	04 45 117 25 10 10 117 25 10 10 10 10 10 10 10 10 10 10 10 10 10	04 45 117 25 10 10 117 25 10 10 10 10 10 10 10 10 10 10 10 10 10	04 45 117 25 339 25 10 45 117 25 25 10 25 25 25 25 37 37 37 37 37 25 25 25 25 37 37 37 37 25 25 37 25 25 37 25 25 25 25 25 25 25 25 25 25 25 25 25	04 11 45 11 17 17 17 17 17 17 25 17 17 23 39 17 17 25 10 17 13 25 10 17 13 25 10 17 13 25 10 17 10 25 10 17 10 25 10 17 10 25 10	04 16 45 117 17 17 117 17 17 117 17 17 117 17 17 117 17 17 117 17 17 117 17 10 110 10 10 110 10 10 110 10 10	04 11 12 13 14 15 16 17 18 19 10 10 11 12 13 14 15 16 17 18 19 10 10 10 10 10 10
10+	111	0.16 0.17 0.17 0.17 0.39	0.16 0.16 0.17 0.17 0.17 0.39 0.39	0.16 0.17 0.17 0.17 0.39 0.39	0.16 0.17 0.17 0.17 0.17 0.39 0.39 0.39 0.39	0.16 0.17 0.17 0.17 0.17 0.39 0.39 0.39 0.39 0.39 0.39	0.16 0.17 0.17 0.17 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.73	0.16 0.17 0.17 0.17 0.39 0.39 0.73 0.73 0.73 0.73	0.16 0.17 0.17 0.17 0.39 0.73 0.73 0.73 0.73 0.73 0.73	0.16 0.17 0.17 0.17 0.39 0.39 0.39 0.73	0.16 0.17 0.17 0.17 0.39
0.1											
	7 37 3.96 3.96 -23.5 11	7 37 3.96 3.96 -23.5 11 7 45 4.02 4.01 -24.4 14 9 10 3.87 3.87 -20.9 2	7 37 3.96 3.96 -23.5 11 7 45 4.02 4.01 -24.4 14 9 10 3.87 3.87 -24.4 14 9 25 3.91 3.91 -22.3 7	7 37 3.96 3.96 -23.5 11 7 45 4.02 4.01 -24.4 14 9 10 3.87 3.87 -24.4 14 9 25 3.91 3.91 -22.3 7 9 37 3.97 3.96 -23.5 11	7 37 3.96 3.96 -23.5 11 7 45 4.02 4.01 -24.4 14 9 10 3.87 3.87 -24.4 14 9 25 3.91 3.87 -20.9 2 9 37 3.91 3.96 -22.3 7 9 37 3.96 -22.3 7 9 45 4.03 4.01 -24.4 14	7 37 3.96 3.96 -23.5 11 7 45 4.02 4.01 -24.4 14 9 10 3.87 3.87 -24.4 14 9 25 3.91 3.87 -20.9 2 9 37 3.91 3.96 -22.3 7 9 37 3.97 3.96 -22.3 7 9 45 4.03 4.01 -24.4 14 10 3.93 3.92 -21.2 3 3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Thermodynamic parameters for the protonation of oxalate in aqueous tetraethylammonium iodide solutions^a

2 0.04	0.04	10	5.11 °	5.05 °	- 27.4	6 c	120	0.2 د
0.04	0.04	25	5.18	5.13	-29.2	10	133	0.3
0.04	0.04	37	5.26	5.20	- 30.9	13	145	0.3
0.04	0.04	45	5.33	5.24	-32.0	16	154	0.3
0.16	0.16	10	4.98	4.89	-26.5	5	116	0.2
0.16	0.17	25	5.05	4.95	- 28.3	6	129	0.3
0.16	0.17	37	5.12	5.03	-29.9	13	141	0.3
0.16	0.17	45	5.19	5.19	- 26.6	16	150	0.4
0.36	0.39	10	5.00	4.92	-27.1	9	115	0.2
0.36	0.39	25	5.07	5.07	- 28.9	10	129	0.3
0.36	0.39	37	5.14	5.14	-30.5	13	141	0.3
0.36	0.39	45	5.20	5.20	-31.7	16	150	0.4
0.64	0.73	10	5.11	5.11	- 27.7	œ	120	0.2
0.64	0.73	25	5.18	5.18	- 29.6	10	133	0.3
0.64	0.73	37	5.26	5.26	-31.2	14	145	0.3
0.64	0.73	45	5.32	5.32	-32.4	16	154	0.3
1.00	1.22	10	5.25	5.24	- 28.4	8	128	0.2
1.00	1.23	25	5.34	5.33	- 30.4	12	143	0.3
1.00	1.24	37	5.43	5.41	-32.1	16	155	0.3
1.00	1.24	45	5.51	5.48	-33.4	19	165	0.3
^a For the symbols ¹ ^b $3s(\log \beta_1^H) = 0.00$ ^c $3s(\log \beta_2^H) = 0.04$	used in this tal $5-0.01$; $3s(\Delta H)$ -0.08 ; $3s(\Delta H)$	ble see the sec 4^{0}_{1} = 0.5-1; l $^{\circ}_{2}$ = 3.5-7; la	xtion entitled Calo arge uncertainties rge uncertainties	culations. Units: Δ s in ΔC_p° . in ΔC_p° .	G° and ΔH° kJ	mol ⁻¹ ; <u>ΔS° J</u>]	K ⁻¹ mol ⁻¹ ; <u></u>	ΔC_p kJ K ⁻¹ mol ⁻¹ .

Thermodynamic parameters for the formation of Na $^{\ast}\,$ and K * –oxalate complexes a

Species	I _e (NaCl)	<i>T</i> (°C)	$\log \beta_{\rm c}^{\rm M}$	$\log \beta_{\rm m}^{\rm M}$	ΔG°	ΔH°	ΔS°	ΔC_{p}°
$\overline{Na(ox)^{-}}$	0.04	10	0.57 ^b	0.57	-3.1	1 ^b	16	0.2 ^b
	0.04	25	0.60	0.60	-3.4	5	27	0.2
	0.04	37	0.64	0.64	-3.8	8	37	0.3
	0.04	45	0.68	0.68	-4.1	10	44	0.3
	0.16	10	0.48	0.48	-2.6	1	14	0.2
	0.16	25	0.50	0.50	-2.9	4	24	0.2
	0.16	37	0.54	0.54	-3.2	7	34	0.3
	0.16	45	0.58	0.58	- 3.5	10	41	0.3
	0.36	10	0.48	0.48	-2.6	1	14	0.2
	0.36	25	0.51	0.51	-2.9	5	25	0.2
	0.36	37	0.55	0.55	-3.3	7	35	0.3
	0.36	45	0.59	0.58	-3.5	10	41	0.3
	0.64	10	0.54	0.54	-2.9	2	18	0.2
	0.64	25	0.57	0.57	-3.3	5	28	0.2
	0.64	37	0.62	0.62	-3.7	8	38	0.3
	0.64	45	0.66	0.66	-4.0	10	45	0.3
	1.00	10	0.62	0.61	-3.3	4	24	0.2
	1.00	25	0.67	0.66	-3.8	7	36	0.2
	1.00	37	0.73	0.72	-4.3	10	46	0.3
	1.00	45	0.78	0.77	-4.7	12	53	0.3
NaH(ox) ⁰	0.04	10	3.68 °	3.68	- 19.9	7 °	94	
	0.04	25	3.74	3.74	-21.4	7	96	
	0.04	37	3.80	3.80	-22.5	8	98	
	0.04	45	3.83	3.83	-23.3	8	99	
	0.16	10	3.55	3.54	- 19.2	6	90	
	0.16	25	3.61	3.61	- 20.6	7	92	
	0.16	37	3.66	3.65	-21.7	7	94	
	0.16	45	3.69	3.68	-22.4	8	95	
	0.36	10	3.57	3.56	- 19.3	6	90	
	0.36	25	3.63	3.62	-20.7	7	92	
	0.36	37	3.67	3.67	-21.8	7	93	
	0.36	45	3.71	3.70	- 22.5	7	94	
	0.64	10	3.67	3.67	- 19.9	7	94	
	0.64	25	3.74	3.73	-21.3	7	96	
	0.64	37	3.79	3.78	-22.5	8	98	
	0.64	45	3.83	3.82	-23.2	8	99	
	1.00	10	3.82	3.81	- 20.6	8	102	
	1.00	25	3.90	3.89	- 22.2	9	105	
	1.00	37	3.97	3.95	-23.5	10	107	
	1.00	45	4.01	3.99	- 24.3	10	109	

Species	I _e (KCl)	<i>T</i> (°C)	$\log \beta_{\rm c}^{\rm M}$	$\log \beta_{\rm m}^{\rm M}$	ΔG°	ΔH°	ΔS°	ΔC_p°
$\overline{K(ox)^{-}}$	0.04	10	0.32 ^d	0.32	-1.7	10 ^d	42	0.3 ^d
	0.04	25	0.43	0.43	-2.5	14	56	0.3
	0.04	37	0.54	0.54	-3.2	18	68	0.3
	0.04	45	0.62	0.62	-3.8	21	77	0.4
	0.16	10	0.22	0.22	-1.2	10	40	0.3
	0.16	25	0.33	0.33	- 1.9	14	54	0.3
	0.16	37	0.44	0.44	- 2.6	18	66	0.3
K(ox)-	0.16	45	0.52	0.52	- 3.2	21	75	0.4
	0.36	10	0.23	0.22	-1.2	10	40	0.3
	0.36	25	0.34	0.33	-1.9	14	54	0.3
	0.36	37	0.45	0.44	2.6	18	66	0.3
	0.36	45	0.53	0.53	- 3.2	21	75	0.4
	0.64	10	0.29	0.28	- 1.5	11	43	0.3
	0.64	25	0.41	0.40	-2.3	15	58	0.3
	0.64	37	0.52	0.51	-3.0	19	70	0.3
	0.64	45	0.61	0.60	-3.6	21	79	0.4
	1.00	10	0.37	0.36	1.9	12	50	0.3
	1.00	25	0.50	0.49	-2.8	17	65	0.3
	1.00	37	0.63	0.61	-3.6	21	78	0.3
	1.00	45	0.72	0.71	- 4.3	23	87	0.4
KH(ox) ⁰	0.04	10	3.52 °	3.52	- 19.1	7 °	94	
	0.04	25	3.60	3.59	-20.5	8	96	
	0.04	37	3.65	3.65	-21.7	9	98	
	0.04	45	3.69	3.69	-22.5	9	100	
	0.16	10	3.39	3.38	- 18.3	7	90	
	0.16	25	3.46	3.45	- 19.7	8	92	
	0.16	37	3.51	3.51	-20.8	8	94	
	0.16	45	3.55	3.54	-21.6	9	95	
	0.36	10	3.41	3.40	- 18.4	7	9 0	
	0.36	25	3.48	3.47	- 19.8	8	92	
	0.36	37	3.53	3.52	- 20.9	8	94	
	0.36	45	3.57	3.56	- 21.7	8	95	
	0.64	10	3.52	3.50	- 19.0	7	93	
	0.64	25	3.59	3.57	-20.4	8	96	
	0.64	37	3.65	3.63	- 21.6	9	98	
	0.64	45	3.69	3.67	- 22.4	9	99	
	1.00	10	3.66	3.64	- 19.7	9	102	
	1.00	25	3.75	3.73	- 21.3	10	105	
	1.00	37	3.82	3.80	- 22.5	11	108	
	1.00	45	3.87	3.84	-23.4	11	109	

TABLE 4 (continued)

^a For the symbols used in this table see the section entitled Calculations. Units: ΔG° and ΔH° kJ mol⁻¹; ΔS° J K⁻¹ mol⁻¹; ΔC°_{p} kJ K⁻¹ mol⁻¹. ^b $3s(\log \beta_{01}^{M}) = 0.025 - 0.07$; $3s(\Delta H^{\circ}) = 2 - 5$. ^c $3s(\log \beta_{11}^{M}) = 0.1 - 0.2$. ^d $3s(\log \beta_{01}^{M}) = 0.04 - 0.08$; $3s(\Delta H^{\circ}) = 3.5 - 7$. ^e $3s(\log \beta_{11}^{M}) = 0.1 - 0.3$.

Fig. 2. Distribution of species, vs. pH, in the system H⁺-Na⁺-ox²⁻. $T = 37^{\circ}$ C; $C_{\text{Na}} = I = 0.36 \text{ mol } \text{dm}^{-3}$; $C_{\text{ox}} = 0.001 \text{ mol } \text{dm}^{-3}$. Curve 1, H₂(ox)⁰; curve 2, NaH(ox)⁰; curve 3, H(ox)⁻; curve 4, Na(ox)⁻.

TABLE 5

Comparison with literature findings

\overline{T}	Ι	$\log K_1^{\mathrm{H}}$	$\log K_2^{\rm H}$	Notes
25	0	4.284 ± 0.017 (m) ^a	1.29 ± 0.05	Average literature value, ref. 8
25	0	4.266 (m)	_	Pinching and Bates, ref. 20
25	0	$4.272 \pm 0.001 \text{ (m)}$	1.317 ± 0.015 (m)	This work
25	0.1 (NaClO₄)	3.83 ± 0.02 (c) ^a	1.2 ± 0.2 (c)	Average literature value, ref. 8
25	$1 (NaClO_4)$	3.56 ± 0.01 (c)	1.05 ± 0.04 (c)	Average literature value, ref. 8
25	1 (Na ⁺)	3.60 ± 0.01 (c)	1.10 <u>+</u> 0.05 (c)	This work
37	0	4.34 ± 0.01 (c)		Average literature value
\overline{T}	Ι	ΔH°_{1}	$\Delta H^{\circ}{}_{2}$	Notes
25	0	6.55 ± 0.28		Average literature value, ref. 8
25	0	6.49 ± 0.17	3.3 ± 1	Daniele et al., ref. 9
25	0	6.8 ± 0.1	3.4 ± 1	This work
\overline{T}	Ι	$\log K^{\operatorname{Nab}}$	log K ^{K b}	Notes
18	0		0.8	Banks et al., ref. 21
25	0	0.86		Daniele et al., from a literature
35	0	0.91		analysis, ref. 9
37	0.1	0.53	0.43	Daniele et al., ref. 9
25	0	0.88	0.71	This work
37	0	0.92	0.83	This work
38	0	1.12		Finlayson et al., ref. 22
25	0	$\Delta H^\circ = 4.4$		Daniele et al., from a literature
25	0.25	$\Delta H^{\circ} = 4.4$	14.2	This work
25	0	$\Delta H^{\circ} = 1$		This work
25	0	$\Delta H^\circ = 1.7$		Daniele et al., from a literature analysis, ref. 23

^a (m) = molal scale; (c) = molar scale; ΔH° in kJ mol⁻¹.

^b Formation constants in the molar scale.

these species the error must be higher with respect to protonation, the agreement is satisfactory; no data are available for protonated complexes.

The dependence on ionic strength of the protonation constants and formation constants was calculated according to the equation

$$\log K(I) = \log K(0.25) - z *A \left[\sqrt{I} / (1 + B\sqrt{I}) - \sqrt{0.25} / (1 + B\sqrt{0.25}) \right] + C(I - 0.25) + D(I^{3/2} - 0.25^{3/2})$$
(2)

 $z^* = \sum z_{\text{reactants}}^2 - \sum z_{\text{products}}^2$

$$A = 0.5115 + 7.2 \times 10^{-4} (T - 25) + 9.5 \times 10^{-6} (T - 25)^{2} \text{ (molar scale)}$$
$$A = 0.5108 + 7.1 \times 10^{-4} (T - 25) + 6.9 \times 10^{-6} (T - 25)^{2} \text{ (molal scale)}$$

where B, C and D are empirical parameters, and A is the Debye-Hückel parameter.

In Table 6 we report these parameters calculated from experimental data. As one can see, the parameters C and D (eqn. (2)) which define the dependence on ionic strength show different values for apparent protonation constants, whilst having the same value for protonation constants obtained in Et₄NI and for formation constants of Na⁺ and K⁺ complexes.

Errors reported for all the thermodynamic parameters are quite low and allow us to estimate the concentrations of various species with an accuracy compatible with a correct speciation of natural fluids containing oxalate in the investigated I,T range. As an example, in Table 7 we report some percentages of formation together with the errors arising from uncertainties in formation parameters. As one can see, errors in percentages for the main species are quite low, and the picture of solutions containing sodium and potassium species is satisfactory.

In Table 8, some recommended formation thermodynamic parameters values are reported for protonated and Na^+ complex species only, for which comparisons with literature findings can be made.

Thermodynamic formation values from this work can be used to simulate the conditions of all natural fluids containing oxalate and alkali metal ions. By using sufficiently accurate Ca^{2+} and Mg^{2+} -oxalate formation constants and Na⁺, K⁺-oxalate formation data here reported we were able to simulate also the protonation constants of oxalate in synthetic sea water, as reported in Table 9.

ACKNOWLEDGEMENTS

We thank MURST and CNR for financial support.

Parameters	for the deper	ndence on ioni	c strength of	thermodyna	umic paramo	eters of H ⁺ , N	a ⁺ and K ⁺ ox:	alate complex fo	ormation	
Medium	log K ^a	ΔH* b	$\Delta C_p^* b$	B°	C °	aC/aT°	D°	∂D/∂T°	Notes	
NaCl	3.71	4.9	150	1.000	0.603	- 0.0025	-0.295	0.0019	$\log K_{1c}^{,\rm H}$ vs. I_c	
	3.71	5.0	146	1.606	0.080	-0.0005			2	
	3.70	5.0	157	1.000	0.563	-0.0026	-0.275	0.0022	$\log K_{1c}^{,\mathrm{H}} \mathrm{vs.} I_{s,c}$	
	3.70	5.1	151	1.470	0.106	-0.0005				
	3.71	4.7	144	1.000	0.598	-0.0024	-0.296	0.0020	$\log K_{1m}^{,\rm H}$ vs. I_m	
	3.71	4.9	148	1.633	0.069	0.0004				
	3.70	4.8	158	1.000	0.566	-0.0024	-0.283	0.0022	$\log K_{1m}^{,H}$ vs. I_{rm}	
	3.70	5.0	155	1.504	0.091	-0.0004				
	4.79	7.5	233	1.000	1.221	-0.0012	-0.661	0.0016	$\log \beta_{2c}^{,\rm H}$ vs. I_{c}	
	4.81	7.8	223	2.030	0.068	0.0000			2 1	
	4.78	7.6	237	1.000	1.223	-0.0026	-0.694	0.0030	$\log \beta_{2c}^{,\mathrm{H}}$ vs. $I_{ac}^{,c}$	
	4.79	8.0	229	1.895	0.091	0.0000				
	4.79	7.6	223	1.000	1.186	-0.0012	-0.638	0.0012	$\log \beta_{2m}^{,\rm H}$ vs. I_m	
	4.80	7.8	225	1.997	0.067	-0.0002				
	4.78	7.7	230	1.000	1.181	-0.0020	-0.662	0.0022	$\log \beta_{2m}^{,\rm H}$ vs. $I_{\rm gm}$	
	4.79	8.0	233	1.871	0.088	- 0.0002				
KCI	3.75	2.3	135	1.000	0:794	-0.0098	-0.414	0.0057	$\log K_{I_c}^{,\mathrm{H}}$ vs. I_c	
	3.76	2.6	146	1.950	0.066	-0.0034				
	3.75	2.0	135	1.000	0.803	-0.0115	-0.444	0.0072	$\log K_{1c}^{,\mathrm{H}}$ vs. I_{ec}	
	3.75	2.5	152	1.808	0.087	-0.0044				
	3.75	2.3	132	1.000	0.803	-0.0108	- 0.429	0.0067	$\log K_{1m}^{,\rm H} \mathrm{vs.} I_{m}$	
	3.76	2.7	115	2.002	0.047	-0.0031				
	3.75	2.0	135	1.000	0.815	-0.0125	-0.465	0.0085	$\log K_{\rm 1m}^{,\rm H}$ vs. $I_{\rm c.m}$	
	3.75	2.6	124	1.880	0.061	-0.0040				
	4.85	4.9	211	1.000	1.480	- 0.0090	-0.799	0.0056	$\log \beta_{2c}^{,H}$ vs. I_{c}	
	4.87	5.3	194	2.346	0.097	-0.0028			1	

-+ /1 Puu + "N + II J" ł 47 30 1 fra th **TABLE 6** Doromo

	4.85	4.6	211	1.000	1.532	-0.0110	- 0.879	0.0078	$\log \beta_{2c}^{, H}$ vs. $I_{e,c}$
	4.86	5.2	202	2.171	0.135	-0.0036			
	4.85	4.7	206	1.000	1.440	-0.0000	-0.781	0.0056	$\log \beta_{2m}^{,H}$ vs. I_m
	4.87	5.1	185	2.366	0.071	-0.0028			
	4.85	4.4	205	1.000	1.500	-0.0114	-0.870	0.0080	$\log \beta_{2m}^{,H}$ vs. $I_{e,m}$
	4.86	5.0	195	2.212	0.096	- 0.0036			i
Et₄NI	3.90	6.7	361	1.500	1.031	0.0011	-0.418	0.0011	log $K_{\rm lc}^{\rm H}$ vs. $I_{\rm e.c}$
	3.89	6.4	359	1.500	1.077	-0.0013	-0.518	0.0023	$\log K_{\rm lm}^{\rm H}$ vs. $I_{\rm e.m.}$
	5.04	9.2	312	1.500	1.602	-0.0030	-0.629	0.0050	$\log \beta_{2c}^{\rm H}$ vs. I_{ec}
	4.99	11.5	261	1.500	1.849	0.0088	- 0.859	-0.0070	$\log \beta_{2m}^{\rm H}$ vs. $I_{\rm e,m}$
NaCI	0.49	4.5	260	1.500	1.006	-0.0004	-0.394	0.0026	log K_{1c}^{Na} vs. $I_{e,c}$
	0.49	4.4	247	1.500	1.033	-0.0015	-0.436	0.0034	log K _{1m} vs. Iem
	3.60	6.7	60	1.500	1.584	-0.0010	-0.614	0.0034	$\log \beta_{2c}^{Na}$ vs. $I_{e.c}$
	3.60	6.7	30	1.500	1.567	-0.0006	-0.620	0.0022	$\log \beta_{2m}^{Na}$ vs. $I_{e,m}$
KCI	0.33	14.1	309	1.500	1.026	0.0003	-0.411	0.0019	log $K_{1c}^{\rm K}$ vs. I_{ec}
	0.32	14.2	329	1.500	0.988	0.0013	- 0.398	0.0006	log K_{lm}^{K} vs. I_{em}
	3.45	7.5	53	1.500	1.603	-0.0008	-0.633	0.0030	$\log \beta_{2e}^{\rm K}$ vs. $I_{e,e}$
	3.44	7.6	46	1.500	1.563	- 0.0008	-0.631	0.0024	$\log \beta_{2m}^{\overline{K}}$ vs. $I_{e,m}$
* 2			C		Ð		aC/aT		aD/aT
4			1.021	1 7 1	- 0.408		≈ 0		0.0019
6	2		1.596		-0.625		- 0.0008		0.0038
$c_0 = 0.129 c_1$ ($C = c_0 p^* +$	$= 0.233 \ d = -$ $c_1 z^*; D = z^*$	0.103 (at 25°C d; see ref. 5)	0						
^a Formation ^b $\Delta H^* = R_1^{-1}$ ^c Eqn. (2).	constant at I r ² ($\partial \ln K / \partial T$)	= 0.25. ; $\Delta C_p^* = \partial \Delta H$	*/ <i>ðT</i> ; ΔH*	$\Delta C_p^* = \Delta I$	Ψ°, ΔC° _ρ wh	cn K is in the	molal scale.		

Formati	on percentages and	errors ($\% \pm 3s^{a}$)		
pН	H(ox) ⁻	$H_2(ox)^0$	Na(ox) ⁻	
1.5	60.4 ± 2.5	27.6±2.4	-	
2	73.5 ± 2.5	10.6 ± 1.1	_	

 3.5 ± 0.4

 75.8 ± 2.5

 68.0 ± 2.1

 49.1 ± 1.3

 26.0 ± 0.8

 10.4 ± 0.4

^a Errors in percentages were calculated assuming that $3s(\log \beta_1^H) = 1.2\%$; $3s(\log \beta_2^H) =$ 12%; $3s(\log K_1^{Na}) = 7\%$; $3s(\log \beta_2^{Na}) = 23\%$; $3s(C_{Na}) = 3s(C_{\alpha x}) = 0.1\%$.

 3.4 ± 0.3

 9.7 ± 0.7

 22.2 ± 1.3

 37.2 ± 1.7

 47.1 ± 1.7

NaH(ox)⁰ 11.4 ± 2.4 13.9 ± 2.8

 14.3 ± 2.8

 12.8 ± 2.6

 9.3 ± 1.9 4.9 ± 1.1

TABLE 8

Some recommended values

T	I	Recommended value	
25	0	$\log K_{im}^{\rm H} = 4.270 \pm 0.005$	$\Delta H^{\circ}_{1} = 6.65 \pm 0.2$
		$\log K_{2m}^{\rm H} = 1.31 \pm 0.02$	$\Delta H^{\circ}_{2} = 3.4 \pm 1$
37	0.16 (Et₄NI)	$\log K_{1c}^{\rm H} = 3.96 \pm 0.02$	-
37	0	$\log K_{1c}^{H} = 4.34 \pm 0.01$	
25	0	$\log K_{1c}^{Na} = 0.88 \pm 0.05$	
37	0	$\log K_{1c}^{Na} = 0.95 \pm 0.1$	
		- 10	

TABLE 9

Protonation constants of oxalate at 25°C in synthetic sea water (20%, 35% and 45%)

	20%	35%	45%	
$\log K_{1c}^{\rm H}$	2.86 ± 0.05	2.73 ± 0.05	2.68 ± 0.07	
$\log \beta_{2c}^{\hat{H}}$	3.9 ± 0.1	3.8 ± 0.1	3.7 ± 0.2	

 Mg^{2+} and Ca^{2+} formation constants used in the simulation $\log K_{1c}^{Ca} = 2.99 \pm 0.1 + f(I, T)^{a}$ $\log K_{2c}^{Ca} = 1.0 \pm 0.2 + g(I)^{b}$ $\log K_{1c}^{Cg} = 3.46 \pm 0.07 + f(I, T)^{a}$ $\log K_{2c}^{Mg} = 1.0 \pm 0.2 + g(I)^{b}$

 $f(I, T) = -8\sqrt{I}/(2+3\sqrt{I}) + 1.94I - 0.80I^{3/2} + 0.005(T-25)$ $g(I) = -4\sqrt{I}/(2+3\sqrt{I})+1.0I-0.4I^{3/2}$

^a log K_{1c}^{M} has the same dependence on temperature for both Ca²⁺ and Mg²⁺. ^b log K_{2c}^{M} is fairly independent of temperature.

REFERENCES

1 P.G. Daniele, A. De Robertis, C. De Stefano, S. Sammartano and C. Rigano, J. Chem. Soc., Dalton Trans., (1985) 2353.

2.5

3.5

4.5

3

4

- 2 A. De Robertis, C. De Stefano, C. Rigano and S. Sammartano, J. Solution Chem., 19 (1990) 569.
- 3 P.G. Daniele, A. De Robertis, C. De Stefano, A. Gianguzza and S. Sammartano, J. Chem. Res., Synop., (1990) 300; Miniprint, (1990) 2316.
- 4 P.G. Daniele, A. De Robertis, C. De Stefano and S. Sammartano, Ann. Chim. (Rome), 80 (1990) 177.
- 5 A. Casale, P.G. Daniele, A. De Robertis and S. Sammartano, Ann. Chim. (Rome), 78 (1988) 249.
- 6 A. Casale, P.G. Daniele, C. De Stefano and S. Sammartano, Talanta, 36 (1989) 903.
- 7 P.G. Daniele, A. De Robertis, C. De Stefano and S. Sammartano, J. Solution Chem., 18 (1989) 23.
- 8 L.G. Sillén and A.E. Martell, Stability Constants, Chem. Soc. Spec. Publ. Nos. 17 and 25, The Chemical Society, London, 1964 and 1971; D.D. Perrin, Stability Constants, Part B: Organic Ligands, Pergamon, Oxford, 1979; A.E. Martell and R.M. Smith, Critical Stability Constants, Plenum, New York, Vol. 3 (other organic ligands), 1977; Vol. 5 (first supplement), 1982; Vol. 6 (second supplement), 1989.
- 9 P.G. Daniele, C. Rigano and S. Sammartano, Thermochim. Acta, 46 (1981) 103.
- 10 P.G. Daniele, C. Rigano and S. Sammartano, Thermochim. Acta, 62 (1983) 101.
- 11 D.D. Perrin, W.L.F. Armorego and D.R. Perrin, Purification of Laboratory Chemicals, Pergamon, Oxford, 1966.
- 12 C. Rigano, M. Grasso and S. Sammartano, Ann. Chim. (Rome), 74 (1984) 537; C. De Stefano, P. Princi, C. Rigano and S. Sammartano, Ann. Chim. (Rome), 77 (1987) 643.
- 13 A. De Robertis, C. De Stefano, C. Rigano and S. Sammartano, Abstracts, Colloquium Chemiometricum Mediterraneum, Barcelona, Spain, 1987, p. 87.
- 14 A. De Robertis, C. De Stefano, S. Sammartano and C. Rigano, Talanta, 34 (1987) 933.
- 15 A. De Robertis, C. De Stefano, C. Rigano and S. Sammartano, Anal. Chim. Acta, 191 (1986) 385; C. De Stefano, P. Princi, C. Rigano and S. Sammartano, Comput. Chem., 13 (1989) 343.
- 16 A. De Robertis, C. Rigano, S. Sammartano and O. Zerbinati, Thermochim. Acta, 115 (1987) 241.
- 17 E.C.W. Clarke and D.N. Glew, Trans. Faraday Soc., (1966) 539.
- 18 L. Hepler, Thermochim. Acta, 50 (1981) 69.
- 19 P.G. Daniele, A. De Robertis, C. De Stefano and S. Sammartano, in S. Alegret, J.J. Arias, D. Barcelo, J. Casal and G. Rauret (Eds.), Miscellania de Treballs Científics en Homenatge a Enric Casassas, Bellaterra, Universitat Autonoma de Barcelona, 1991, p. 121.
- 20 G.D. Pinching and R.G. Bates, J. Res. Natl. Bur. Stand., 40 (1948) 405.
- 21 W.H. Banks, E.C. Righellato and C.W. Davies, Trans. Faraday Soc., 27 (1931) 621.
- 22 B. Finlayson, R. Roth and L. Dubois, Urinari Calculi Int. Symp. Renal Stone Res., Madrid, 1972, pp. 1–7.
- 23 P.G. Daniele, C. Rigano and S. Sammartano, Thermochim. Acta, 62 (1983) 101.